Hermite approximation with high accuracy for space curves in $\R^d$
نویسنده
چکیده
In this talk, it is shown that a space curve in $\R^d$ can be approximated by a piecewise polynomial curve of degree $m$ with order $ (m+1)+ \lfloor (m+1)/(2d-1) \rfloor$ rather than $m+1$. Moreover, we show that the optimal order $(m+1)+\lfloor (m-1)/(d-1)\rfloor$ is possible for a particular set of curves.
منابع مشابه
High accuracy approximation of helices by quintic curves
In this paper we present methods for approximating a helix segment by quintic Bézier curves or quintic rational Bézier curves based on the geometric Hermite interpolation technique in space. The fitting curve interpolates the curvatures as well as the Frenet frames of the original helix at both ends. We achieve a high accuracy of the approximation by giving a proper parametrization of the curve...
متن کاملHIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT
In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and let $u$ be a functiondefined over the triangle $T$. For $kin mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the ...
متن کاملAn Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملAnalysis of Magneto-hydrodynamics Jeffery-Hamel Flow with Nanoparticles by Hermite-Padé Approximation
The combined effects of nanoparticle and magnetic field on the nonlinear Jeffery-Hamel flow are analyzed in the present study. The basic governing equations are solved analytically to nonlinear ordinary differential equation using perturbation method together with a semi-numerical analytical technique called Hermite- Padé approximation. The obtained results are well agreed with that of the Adom...
متن کاملMulti-dimensional Hermite Interpolation and Approximation for Modelling and Visualization
In this paper we use some well known theorems of algebraic geometry in reducing polynomial Hermite interpolation and approximation in any dimension to the solution of linear systems. We present a mix of symbolic and numerical algorithms for low degree curve ts through points in the plane, surface ts through points and curves in space, and in general, hypersuface ts through points, curves, surfa...
متن کامل